
 Schedule of Teaching

Department of Mathematics

Govt. College Jhandutta Distt. Bilaspur (H.P.)

Prepared by:

Rekha Devi
Assistant Professor
Department of Mathematics

Class: B.A./B.Sc First Year

Course: Differential Calculus (MATH101 TH)

Lectures per week: 3

Course Outcomes (CO):

The students will be well conversant with the following types of differential calculus:

- CO-1. Basic theory of differential calculus.
- Limit and Continuity, Types of discontinuities.
- Differentiability of functions.
- Indeterminate forms, Rolle's theorem.
- Concavity, Convexity \& Points of Inflexion. Maxima and Minima with Lagrange Multipliers Method (two variables), Jacobian (upto three variables).

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Basic theory of differential calculus	First Week	July
2.	Limit	Second Week	
3.	Questions related to Limit	Third Week	
4.	Continuity	Fourth Week	
5.	Questions related to Continuity	First Week	August
6.	Types of discontinuities.	Second Week	
7.	Differentiability of functions	Third Week	
8.	Questions related to Differentiability of functions	Fourth Week	
9.	Successive differentiation	First Week	September
10.	Leibnitz's theorem	Second Week	
11.	Indeterminate forms	Third Week	
12.	Rolle's theorem	Fourth Week	
13.	Questions related to Rolle's theorem	First Week	October
14.	Lagrange's theorem	Second Week	
15.	Questions related to Lagrange's theorem	Third Week	

16.	Cauchy Mean Value theorem	Fourth Week	
17.	Questions related to Cauchy Mean Value theorem	First Week	November
18.	Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series.	Second Week	
19.	Questions related to these theorems	Third Week	
20.	Maclaurin's series of $\sin \mathrm{x}, \cos \mathrm{x}, \mathrm{e}^{\mathrm{x}}, \log (1+\mathrm{x}),(1+\mathrm{x})^{\mathrm{m}}$.	Fourth Week	
21.	Concavity, Convexity \& Points of Inflexion	First Week	December
22.	Curvature, Radius of curvature, center of curvature	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Asymptotes, Singular points, Double point, Polar coordinates, Relation between Cartesian and polar coordinates	Second Week	February
26.	Functions of several variables (upto three variables): Limit and Continuity of these functions	Third Week	
27.	Partial differentiation, Euler's theorem on homogeneous functions	Fourth Week	
28.	Lagrange Multipliers Method (two variables), Jacobian (up to three variables).	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Differential Equations (MATH102 TH)

Lectures per week: 3

Course Outcomes (CO):

The students will be well conversant with the following types of differential equations:

- Basic theory of linear differential equations, Wronskian, and its properties. First order exact differential equations. Integrating factors, rules to find an integrating factor.
- Methods for solving higher-order differential equations. Solving a differential equation by reducing its order. Linear homogenous equations with constant coefficients, Linear nonhomogenous equations.
- The method of variation of parameters with constant coefficients. The Cauchy-Euler equation and Legendre equation. Simultaneous differential equations, Total differential equations.
- Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations.Formation of first order partial differential equations (PDE).
- Linear partial differential equation of first order, Lagrange's method. Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Basic theory of linear differential equations	First Week	July
2.	Wronskian, and its properties	Second Week	
3.	Integrating factors	Third Week	
4.	Rules to find an integrating factor	Fourth Week	
5.	First order higher degree equations solvable for x, y, p.	First Week	August
6.	Clairut's form	Second Week	
7.	Methods for solving higher-order differential equations	Third Week	
8.	Solving a differential equation by reducing its order	Fourth Week	
9.	Linear homogenous equations with constant coefficients	First Week	September
10.	Linear non homogenous equations	Second Week	
11.	The method of variation of parameters with constant coefficients	Third Week	
12.	The Cauchy-Euler equation and Legendre equation	Fourth Week	
13.	Simultaneous differential equations	First Week	October
14.	Total differential equations	Second Week	
15.	Order and degree of partial differential equations	Third Week	

16.	Concept of linear partial differential equations	Fourth Week	
17.	Concept of non-linear partial differential equations	First Week	November
18.	Formation of first order partial differential equations(PDE)	Second Week	
19.	Linear partial differential equation of first order	Third Week	
20.	Questions of Linear partial differential equation of first order	Fourth Week	
21.	Lagrange's method	First Week	December
22.	Questions related Lagrange's method	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Classification of second order partial differential equations into elliptic	Second Week	February
26.	Classification of second order partial differential equations into elliptic	Third Week	
27.	Classification of second order partial differential equations into parabolic through illustrations only	Fourth Week	
28.	Classification of second order partial differential equations into hyperbolic through illustrations	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Class: B.A/B.SC 2nd Year

Course: Real Analysis (MATH201TH)

Lectures per week: 3

Course Outcomes (CO):

On completion of this unit of the course, the student will be able to develop a clear-cut idea on sequence and series of functions defined on a set after covering the following:

- Sequence of functions defined on a set, Point wise and uniform convergence. Cauchy $1^{\text {st }}$ Theorem and $2^{\text {nd }}$ Theorem, Cauchy criterion of uniform convergence. Weirstrass' M-test.
- Series of functions defined on a set, Point wise and uniform convergence. Cauchy criterion of uniform convergence. Weierstrass' M-test.
- Power series: Fundamental theorem of power series. Cauchy- theorem. Determination of radius of convergence. Uniform and absolute convergence of power series.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Real Line	First Week	July
2.	Bounded sets	Second Week	
3.	Suprema and infima	Third Week	
4.	completeness property of R	Fourth Week	
5.	Archimedean property of R	First Week	August
6.	Intervals	Second Week	
7.	Concept of cluster points and statement of Bolzano- Weierstrass theorem	Third Week	
8.	Real Sequence	Fourth Week	
9.	Bounded sequence	First Week	September
10.	Cauchy convergence criterion for sequences	Second Week	
11.	Cauchy's theorem on limits	Third Week	
12.	Order preservation and squeeze theorem	Fourth Week	
13.	Monotone sequences and their convergence (monotone convergence theorem without proof).	First Week	October
14.	Infinite series	Second Week	
15.	Cauchy convergence criterion for series	Third Week	
16.	Positive term series, geometric series	Fourth Week	
17.	Comparison test, convergence of p-series	First Week	November
18.	Root test, Ratio test	Second Week	
19.	Alternating series, Leibnitz's test	Third Week	
20.	Definition and examples of absolute and conditional convergence	Fourth Week	

21.	Sequences of functions	First Week	December
22.	Series of functions	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Pointwise and uniform convergence	Second Week	February
26.	M_{n} test, Results about uniform convergence	Third Week	
27.	Power series	Fourth Week	
28.	Radius of convergence	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Algebra MATH202TH

Lectures per week: 3

Course Outcomes (CO):

Students will get an overall understanding of the following concepts:

- Elementary properties using definition of Group. Definition and examples of subgroups.
- Definitions and examples of Ring , Field.
- Concept of Vector space over a Field.
- Basic theorems of homomorphism
- Rings of matrices

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Definition of groups	First Week	July
2.	Examples of groups	Second Week	
3.	Examples of abelian and non-abelian groups	Third Week	

4.	The group Z_{n} of integers under addition modulo n and the group $\mathrm{U}(\mathrm{n})$ of units under multiplication modulo n	Fourth Week	
5.	Cyclic groups from number systems	First Week	August
6.	Complex roots of unity	Second Week	
7.	Subgroups	Third Week	
8.	Cyclic subgroups	Fourth Week	
9.	Concept of a subgroup generated by a subset and the commutator subgroup of group,	First Week	September
10.	Examples of subgroups including the center of a group	Second Week	
11.	Cosets	Third Week	
12.	Index of subgroup	Fourth Week	
13.	Lagrange's theorem, order of an element	First Week	October
14.	Normal subgroups: their definition	Second Week	
15.	Normal subgroups: their definition, examples, and characterizations	Third Week	
16.	Quotient groups	Fourth Week	
17.	Definition of Kernel	First Week	November
18.	Basic theorems of homomorphism	Second Week	
19.	First theorem of Homomorphism	Third Week	
20.	Definition and examples of rings	Fourth Week	
21.	Examples of commutative and non-commutative rings	First Week	December
22.	Zn the ring of integers modulo n	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Rings of matrices	Second Week	February
26.	Subrings	Third Week	
27.	Ideals	Fourth Week	
28.	Definition of Integral domains and fields.	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Integral Calculus (MATH309TH)

Lectures per week: 2

- Evaluation of definite integrals.
- Integration as the limit of a sum.
- Reduction formulae for integrals.
- Definition of Improper Integrals: Statements of (i) μ-test (ii) Comparison test - Simple problems only. Use of Beta and Gamma functions.
- Working knowledge of double integral.
- Applications in Rectification, Quadrature, volume and surface areas of solids formed by revolution of plane curve and areas problems only.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Overview of Integration	First Week	July
2.	Integration by Partial fractions	Second Week	
3.	Questions related to Integration by Partial fractions	Third Week	
4.	Integration of rational and irrational functions	Fourth Week	
5.	Questions related to integration of rational and irrational functions	First Week	August
6.	Properties of definite integrals	Second Week	
7.	Questions related to Properties of definite integrals	Third Week	
8.	Reduction Formulae	Fourth Week	
9.	Questions related to Reduction Formulae	First Week	September
10.	Reduction Formulae, $\int \operatorname{Sin}^{\mathrm{n}} \mathrm{x} d \mathrm{x}, \int \operatorname{Cos}^{\mathrm{n}} \mathrm{x} d \mathrm{x}$,	Second Week	
11.	Questions related to Reduction Formulae, $\int \operatorname{Sin}^{\mathrm{n}} \mathrm{x} d \mathrm{x}$	Third Week	
12.	Reduction Formulae, $\int \operatorname{Sin}^{\mathrm{n}} \mathrm{x} d \mathrm{x}$	Fourth Week	
13.	Questions related to Reduction Formulae $\int \operatorname{Cos}^{\mathrm{n}} \mathrm{x} d \mathrm{x}$	First Week	October
14.	Reduction Formulae $\int e^{\text {ax }} x n d x, \int x^{\mathrm{n}}(\log x)^{\mathrm{m}} d x, \int x$ ${ }^{\mathrm{n}} \operatorname{Sin} x d x, \int x^{\mathrm{n}} \cos x d x$	Second Week	

15.	Questions related to $\int e^{\text {ax }} x n d x, \int x^{\mathrm{n}}(\log x)^{\mathrm{m}} d x$	Third Week	
16.	Questions related to , $\int x^{\mathrm{n}} \operatorname{Sin} x d x, \int x^{\mathrm{n}} \cos x d x$	Fourth Week	
17.	Reduction Formulae $\int \operatorname{Sin}^{\mathrm{n}} \mathrm{X} \operatorname{Cos}^{\mathrm{n}} \mathrm{X} d x$	First Week	November
18.	Questions related to Reduction Formulae $\int \operatorname{Sin}^{n} \mathrm{X} \operatorname{Cos}^{\mathrm{n}} \mathrm{X}$ $d x$	Second Week	
19.	Reduction by connecting two integrals (Smaller Index + 1 Method)	Third Week	
20.	Questions related to Reduction by connecting two integrals (Smaller Index +1 Method)	Fourth Week	
21.	Areas and lengths of curves in the plane, volumes and surfaces of solids of revolution	First Week	December
22.	Questions related to Areas and lengths of curves in the plane, volumes and surfaces of solids of revolution	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Cartesian and parametric form	Second Week	February
26.	Questions related to Cartesian and parametric form	Third Week	
27.	Double and Triple integrals	Fourth Week	
28.	Questions related to Double and Triple integrals	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Vector Calculus (MATH310TH)

Lectures per week: 2

Students will get an overall understanding of the following concepts:

- Scalar and vector product of three vectors. Product of four vectors. Reciprocal vectors. Vector differentiation, Scalar valued point functions, vector valued point functions.
- Gradient of a scalar point function. Divergence and curl of a vector point function. Gradient, Divergence and curl of sums and products.
- Orthogonal curvilinear coordinates. Conditions for orthogonality. Fundamental triads of mutually orthogonal unit vectors. Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinators.
- Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigenvalues and eigen vectors for such transformations and eigen spaces as invariant subspaces.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Concepts of scalar and vector product	First Week	July
2.	Scalar and vector product of three vectors	Second Week	
3.	Questions related to Scalar and vector product of three vectors	Third Week	
4.	Product of four vectors.	Fourth Week	
5.	Questions related to Product of four vectors	First Week	August
6.	Reciprocal vectors	Second Week	
7.	Questions related to Reciprocal vectors	Third Week	
8.	Vector differentiation	Fourth Week	
9.	Questions related to Vector differentiation	First Week	September
10.	Scalar valued point functions	Second Week	
11.	Questions related to Scalar valued point functions	Third Week	
12.	Vector valued point functions	Fourth Week	
13.	Derivative along a curve	First Week	October
14.	Directional derivatives	Second Week	
15.	Gradient of a scalar point function	Third Week	
16.	Questions related to Gradient of a scalar point function	Fourth Week	
17.	Divergence and curl of a vector point function	First Week	November

18.	Questions related to Divergence and curl of a vector point function	Second Week
19.	Gradient, Divergence and curl of sums and products.	Third Week
20.	Laplacian operators in terms of orthogonal curvilinear coordinators	Fourth Week
21.	Questions related to Laplacian operators in terms of orthogonal curvilinear coordinators	First Week
December		
22.	line integral	Second Week
23.	MTT	Third Week
24.	MTT	Fourth Week
25.	Surface integral	Second Week
26.	Questions related to Surface integral	Third Week
27.	Volume integral Theorems of Gauss, Green and Stokes (without proof) and the problems based on these theorems.	Fourth Week
28.	Questions related to Volume integral Theorems of Gauss, Green and Stokes	First Week

There will be class test at the end of each unit.

Course: Matrices

MATH 301TH

Lectures per week: 3

Students will get an overall understanding of the following concepts:

- Types of matrices. Rank of a matrix. Invariance of rank under elementary transformations. Reduction to normal form, Solutions of linear homogeneous and nonhomogeneous equations with number of equations and unknowns up to three.
- Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix.
- Definition of Vector space, R, R2, R3 as vector spaces over R, Concept of Linear dependence/Independence, Standard basis for R, R2, R3, Examples of different bases. Subspaces of R2, R3.
- Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigenvalues and eigen vectors for such transformations and eigen spaces as invariant subspaces.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), definition of matrices	First Week	July
2.	Types of matrices	Second Week	
3.	Rank of a matrix	Third Week	
4.	Invariance of rank under elementary transformations	Fourth Week	
5.	Reduction to normal form	First Week	August
6.	Solutions of linear homogeneous equations	Second Week	
7.	Solutions of non-homogeneous equations with number of equations and unknowns up to three	Third Week	
8.	Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices. Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.		

11.	Rank of matrix	Third Week	
12.	Solutions of a system of linear equations using matrices	Fourth Week	
13.	Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics	First Week	October
14.	Definition of Vector space, R, R2, R3 as vector spaces over R	Second Week	
15.	Concept of Linear dependence/Independence	Third Week	
16.	Standard basis for R, R2, R3, Examples of different bases.	Fourth Week	
17.	Subspaces of R2, R3.	First Week	November
18.	Translation, Dilation, Rotation, Reflection in a point, line and plane	Second Week	
19.	Rotation, Reflection in a point, line and plane	Third Week	
20.	Questions related to Rotation, Reflection in a point, line and plane	Fourth Week	
21.	Questions related to Rotation, Reflection in a point, line and plane	First Week	December
22.	Matrix form of basic geometric transformations	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Interpretation of eigen values	Second Week	February
26.	Interpretation of eigen vectors for these transformations	Third Week	
27.	Eigen spaces as invariant subspaces.	Fourth Week	
28.	Questions related to eigenvalues and eigen vectors	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Numerical Methods (MATH304TH)

Lectures per week: 3

The student will get an overall idea of

- To find a real root of an algebraic or transcendental equation. Location of root (tabular method), Bisection method, Newton-Raphson method with geometrical significance, Numerical Problems.
- Newton's Backward interpolation Formula, Lagrange's Interpolation Formula.
- Numerical differentiation, Central difference method
- Numerical Integration: Trapezoidal and Simpson's one-third formula (statement only). Problems on Numerical Integration.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Algorithms	First Week	July
2.	Algorithms	Second Week	
3.	Convergence with questions	Third Week	
4.	Bisection method with questions	Fourth Week	
5.	False position method with examples	First Week	August
6.	Fixed point iteration method with questions	Second Week	
7.	Newton's method and questions	Third Week	
8.	Secant method	Fourth Week	
9.	LU decomposition	First Week	September
10.	Gauss-Jacobi iterative methods	Second Week	
11.	Gauss-Siedel and SOR iterative methods	Third Week	
12.	Lagrange and Newton interpolation	Fourth Week	
13.	Newton interpolation	First Week	October
14.	Finite difference operators	Second Week	
15.	Numerical differentiation	Third Week	
16.	Newton's forward difference method	Fourth Week	
17.	Backward difference method	First Week	November
18.	Sterling's Central difference method	Second Week	
19.	Questions related to Newton's forward difference method	Third Week	

20.	Questions related to Backward difference method methods	Fourth Week	
21.	Questions related to Sterling's Central difference method	First Week	December
22.	Questions related to Sterling's Central difference method	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Trapezoidal rule	Second Week	February
26.	Questions related to Trapezoidal rule	Third Week	
27.	Simpson's rule, Euler's method	Fourth Week	
28.	Questions related to Simpson's rule, Euler's method	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

There will be class test at the end of each unit.

Class: B.A./B.Sc. Third Year

Course: Probability and Statistics (MATH313TH)

Lectures per week: 2

After completion of this course, the students will be able to understand \& apply the concepts of probability \& statistics covered in the following Units:

- Random experiment, Sample space, probability as a set function, probability axioms, probability space. Finite sample spaces. Conditional probability, Bayes theorem, independence.
- Real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function.
- Discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, Continuous distributions: uniform, normal, exponential.
- Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random
variables, moments, covariance, correlation coefficient, independent random variables, joint moment generating function.
- Measures of central tendency and measures of dispersion, moments, skewness and kurtosis.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), Sample space	First Week	July
2.	Probability axioms	Second Week	
3.	Real random variables (discrete and continuous),	Third Week	
4.	Cumulative distribution function	Fourth Week	
5.	Probability mass/density functions.	First Week	August
6.	Mathematical expectation	Second Week	
7.	Moments	Third Week	
8.	Questions related to Mathematical expectation and Moments	Fourth Week	
9.	Moment generating function	First Week	September
10.	Questions related to Moment generating function	Second Week	
11.	Characteristic function	Third Week	
12.	Questions related to characteristic function	Fourth Week	
13.	Binomial distributions	First Week	October
14.	Questions related to Binomial distributions	Second Week	
15.	Questions related to Binomial distributions	Third Week	
16.	Poisson distributions	Fourth Week	
17.	Questions related to Poisson distributions	First Week	November
18.	Continuous distributions	Second Week	
19.	Questions related to Continuous distributions	Third Week	
20.	Joint cumulative distribution function and its properties	Fourth Week	
21.	Questions related to Continuous distributions	First Week	December
22.	Joint probability density functions	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	

25.	Marginal and conditional distributions	Second Week	February
26.	Expectation of function of two random variables	Third Week	
27.	Conditional expectations	Fourth Week	
28.	Independent random variables.	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
.	Revision	Fourth Week	

There will be class test at the end of each unit.

Course: Theory of Equations\{ MATH316TH\}

Lectures per week: 2

After completion of this course, the students will be able to understand \& apply the concepts of probability \& statistics covered in the following Units:

- General properties of polynomials, Graphical representation of a polynomials, maximum and minimum values of a polynomials, General properties of equations.
- Descarte's rule of signs for positive and negative roots, Relation between the roots and the coefficients of equations.
- Symmetric functions, Applications symmetric function of the roots, Transformation of equations. Solutions of reciprocal and binomial equations.
- Algebraic solutions of the cubic (Carden's method) and biquadratic (Descarte's \& Ferrari's method). Properties of the derived functions.

S.No.	Topic	Week	Month
1.	Introduction about Syllabus, Choice based credit system (CBCS), concepts of polynomials	First Week	July
2.	General properties of polynomials	Second Week	
3.	Graphical representation of a polynomials,	Third Week	
4.	maximum and minimum values of a polynomials	Fourth Week	
5.	Questions related to maximum and minimum values of a polynomial	First Week	August

6.	General properties of equations	Second Week
7.	Questions related to General properties of equations	Third Week
8.	Descarte's rule of signs f o r positive and negative roots	Fourth Week
9.	Questions related to Descarte's rule of signs f o r positive and negative roots	First Week

	the derived functions	
28.	Questions related to Biquadratic (Descarte's \& Ferrari’s method). Properties of the derived functions	First Week
March		
	Revision	Second Week
30.	Revision	Third Week
31.	Revision	Fourth Week

There will be class test at the end of each unit.

