

Schedule of Teaching

Department of Physics

Govt. College Jhandutta Distt. Bilaspur (H.P.)

Prepared By:

Satish Kumar, Associate Professor Department of Physics

Class: BSc First Year

Course: Mechanics (PHYS101)

Lectures per Week: 3

Course Outcomes (CO):

- CO-1. Know the Coordinate systems and motion of a particle.
- CO-2. To understand the Space Time Symmetry and Conservation Laws
- CO-3. Discuss the Gravitation and Inverse Square Force Law.
- CO-4. Rotational Motion and Kinematics of Elastic and Inelastic Collisions
- CO-5. Study the Special Theory of Relativity.

S.No.	Торіс	Week	Month
1.	1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.	First Week	July
2.	Volume, velocity and acceleration in Cartesian and Spherical co-ordinate systems, Solid angle	Second Week	
3.	Relationship of conservation laws and symmetries of space and time.	Third Week	
4.	Inertial frames of reference, Galilean transformation and Galilean invariance.	Fourth Week	
5.	Non-inertial frames, Coriolis force and its applications; Foucault's pendulum.	First Week	August
6.	Newton's Law of Gravitation, Various forces in nature (qualitative).	Second Week	
7.	Central and non-central forces, Inverse square force.	Third Week	
8.	Centre of mass. Equivalent one body problem	Fourth Week	
9.	Reduced mass, angular momentum in central force field. Equation of motion under a force law.	First Week	September
10.	Equation of orbit and turning points. relationship between eccentricity and energy Kepler's laws	Second Week	
11.	Angular velocity, angular momentum, Torque, Conservation of angular momentum.	Third Week	
12.	Elastic and inelastic collisions, coefficient of restitution, Elastic collisions in laboratory and C.M. systems.	Fourth Week	
13.	Velocities, angle and energies in elastic collisions in C.M. and lab. Systems.	First Week	October
14.	Classical Scattering: Cross- section for elastic scattering, Rutherford scattering (with derivation).	Second Week	

15.	Concept of stationary universal frame of	Third Week	
	reference and search for ether.		
16.	Michelson- Morley experiment, postulates of	Fourth Week	
	special theory of relativity		
17.	Lorentz transformations. Observer in relativity.	First Week	November
	Relativity of simultaneity.		
18.	Length contraction, Time dilation.	Second Week	
19.	Relativistic addition of velocities.	Third Week	
20.	Relativistic Doppler effect.	Fourth Week	
21.	Variation of mass with velocity and mass	First Week	December
	energy equivalence.		
22.	Increase of mass in an inelastic collision.	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Relativistic momentum and energies.	Second Week	February
26.	Transformation of momentum, energy.	Third Week	
27.	Minskowsky space.	Fourth Week	
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Electricity, Magnetism and EMT (PHYS102)

Lectures per Week: 3

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. To understand the Vector Analysis.

CO-2. To understand the Electric Current and Fields of Moving charges.

- CO-3. Know the fundamental principles of Magnetism.
- CO-4. To study Electrostatic Fields in Dielectrics.

CO-5. To understand Magnetic Fields in Matter.

S.No.	Торіс	Week	Month
1.	Review of vector algebra (Scalar and Vector product)	First Week	July
2.	Gradient, divergence, Curl and their significance	Second Week	
3.	Vector Integration, Line, surface and volume integrals of Vector fields	Third Week	
4.	Gauss-divergence theorem, Stokes's theorem, Green's theorem	Fourth Week	

5.	Significance of electrostatic force,	First Week	August
	Electrostatic Field, electric flux		-
6.	Gauss's theorem of electrostatics.	Second Week	
	Applications of Gauss theorem-		
	Electric field due to point charge,		
	infinite line of charge, uniformly		
	charged spherical shell and solid		
_	sphere		-
7.	Applications of Gauss theorem-	Third Week	
	plane charged sheet, charged		
	conductor, electrostatic potential,		
0	electrostatic potential energy		
8.	Electric potential due to a dipole	Fourth Week	
	and quadrupole, long uniformly		
0	changed wire, charged disc.	D ¹ (XV 1	0 1
9.	Electric potential energy. Electric	First Week	September
	field as a gradient of a scalar		
	potential, Calculation of electric		
	field due to a point charge and a		
10	Mathed of Floatrical Images	Casard Wastr	-
10.	Deigan and Lonlage equations	Second week	
11	Current and current density	Third Wook	-
11.	Current and current density.		
	Continuity equation, $\sqrt{J} + \frac{\partial p}{\partial t} = 0$. Microscopic form of Ohm's		
	low (L q E) and conductivity		
	Failure of Ohms law and its		
	explanation Invariance of charge		
12	Ampere circuital law and its	Fourth Week	-
12.	applications Hall Effect	I build week	
	Expression for Hall constant and		
	its significance.		
13.	Divergence and curl of magnetic	First Week	October
10.	field B. Vector potential:		
	Definition of vector potential A		
	and derivation.		
14.	E in different frames of	Second Week	
	reference. Field of a point charge		
	moving with constant velocity.		
15.	Field of charge that starts or stops	Third Week	
	(qualitative). Interaction between		
	moving charge and force between		
	parallel currents.		
16.	Definition. and its use in	Fourth Week	
	calculation of change in magnetic		
	field at a current sheet.		
	Transformation equations of E		
	and B from one frame of		
	reference to another		

17.	Dielectrics, parallel plate capacitor with a dielectric,	First Week	November
	dielectric constant, polarization		
	and polarization vector,		
	displacement vector D, molecular		
	Maggetti equation		
10	Nossour equation.	Second Week	-
10.	E and D at the interface between	Second week	
	two homogenous dielectrics		
	illustration through a simple		
	example		
19.	Polarization of matter. Atomic	Third Week	
171	and molecular dipoles, induced.		
	Dipole moment and atomic		
	polarizability, Electric		
	susceptibility and polarization		
	vector		
20.	Capacity of a capacitor filled	Fourth Week	
	with Dielectrics. Dielectrics and		
	Gauss's law Displacement vector-		
	Establishment of relation V.D = ρ		
	tree. Energy stored in a dielectric		
	medium, Benaviour of various		
21	Substances in magnetic fields.	First Wask	December
		FIIST WEEK	December
	relation to free and bound		
	relation to free and bound currents Magnetic permeability		
	relation to free and bound currents, Magnetic permeability and susceptibility and their		
	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation.		
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and	Second Week	
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and	Second Week	
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism.	Second Week	
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of	Second Week	
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization	Second Week	
22.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites.	Second Week	
22. 23.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT	Second Week	
22. 23. 24.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT	Second Week Third Week Fourth Week	
22. 22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's assustions and its physical	Second Week Third Week Fourth Week Second Week	February
22. 22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation EM wayse and	Second Week Third Week Fourth Week Second Week	February
22. 22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave acuation in a medium	Second Week Third Week Fourth Week Second Week	February
22. 22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and	Second Week Third Week Fourth Week Second Week	February
22. 22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity.	Second Week Third Week Fourth Week Second Week	February
22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$	Second Week Third Week Fourth Week Second Week	February
22. 23. 24. 25.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$. Poynting vector. Poynting	Second Week Third Week Fourth Week Second Week	February
22. 23. 24. 25. 26.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$. Poynting vector, Poynting theorem, Impedance of a	Second Week Third Week Fourth Week Second Week Third Week	February
22. 23. 24. 25. 26.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$. Poynting vector, Poynting theorem, Impedance of a dielectric to EM waves. EM	Second Week Third Week Fourth Week Second Week Third Week	February
22. 23. 24. 25. 26.	relation to free and bound currents, Magnetic permeability and susceptibility and their interrelation. Orbital motion of electrons and diamagnetism, Electron spin and paramagnetic. Ferromagnetism. Domain theory of ferromagnetism, magnetization curve, hysterics loss, ferrites. MTT MTT Displacement current, Maxwell's equations and its physical interpretation, EM waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$. Poynting vector, Poynting theorem, Impedance of a dielectric to EM waves, EM waves in conducting medium and	Second Week Third Week Fourth Week Second Week Third Week	February

	a conductor and anomalous		
	dispersion.		
27.	Reflection and Transmission of	Fourth Week	
	EM waves at a boundary of two		
	dielectric media for normal and		
	oblique incidence of reflection of		
	EM waves from the surface of a		
	conductor at normal incidence.		
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Class: BSc2nd Year

Course: Statistical and Thermal Physics (PHYS201)

Lectures per Week: 3

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. Understand Basic Ideas of Statistical Physics.

CO-2. Gain the knowledge of Distribution of Particles in Compartments.

CO-3. To study different types of Statistics in Physics.

CO-4. To know Entropy and Laws of Thermodynamics.

CO-5. Understand Maxwell's Thermodynamic Relations and Their Applications.

CO-6. To study applications of thermodynamics relations.

S.No.	Topic	Week	Month
1.	Scope of statistical physics, basic ideas about probability, distribution of four distinguishable particles in two compartments of equal sizes.	First Week	July
2.	Concept of macro-states, micro- states.	Second Week	
3.	Thermodynamic probability, effect of constraints on the system.	Third Week	
4.	Distribution of n particles in two compartments, Deviation from the state of maximum probability.	Fourth Week	
5.	Equilibrium state of a dynamic system, distribution of n	First Week	August

	distinguishable particles in k		
	compartments of unequal sizes.		
6.	Phase space and division into	Second Week	
	elementary cells. Three kinds of		
	statistics. The basic approach in		
	the three statistics.		
7.	M-B. Statistics applied to an ideal	Third Week	
	gas in equilibrium, experimental		
	verification of the Maxwell		
	Boltzmann's law of distribution		
	of molecular speeds.		
8.	Need for quantum statistics, h as a	Fourth Week	
	natural constant and its		
	implications, indistinguishability		
	of particles and its implications.		
	B-E statistics		
9.	Derivation of Planck's law of	First Week	September
	radiation, deduction of Wien's		
	distribution law and Stefan's law		
	from Plank's law		
10.	Fermi-Dirac statistics.	Second Week	
	Applications to liquid helium,		
	free electrons gas (Fermi level		
	and Fermi Energy), Comparison		
	of M-B, B-E, F-D statistics.		
11.	Application of thermodynamics to	Third Week	
	the thermoelectric effect, change		
	of entropy along a reversible path		
10	in a p-v diagram		
12.	Entropy of a perfect gas, equation	Fourth Week	
	of state of ideal gas from simple		
	doth of the universe		
12	Statistical definition of entropy	First Wash	Oatabar
15.	shange of entropy of system	FIIST WEEK	October
	additive nature of entropy law of		
	increase of entropy		
14	Reversible and irreversible	Second Week	
11.	processes example of reversible	Second Week	
	and irreversible processes		
15.	Work done in a reversible	Third Week	
10.	process, example of entropy in		
	natural process, entropy and		
	disorder.		
16.	Thermodynamic Potentials:	Fourth Week	
	Enthalpy, Gibbs. Helmholtz and		
	Internal Energy functions		
17.	Derivation of Maxwell's	First Week	November
	thermodynamic relations.		

18.	Cooling produced by adiabatic stretching.	Second Week	
19.	Adiabatic compression.	Third Week	
20.	Adiabatic Stretching of a wire.	Fourth Week	
21.	Stretching of thin films, change of internal energy with volume.	First Week	December
22.	Clausius-Clapeyron Equation	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Thermo dynamical treatment of	Second Week	February
	Joule- Thomson effect for		
	liquification of Helium		
26.	Production of very low	Third Week	
	temperatures by adiabatic		
	demagnetization.		
27.	TdS equations	Fourth Week	
28	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Waves and Optics (PHYS202)

Lectures per Week: 3

Course Outcomes (CO):

- CO-1. To know the Simple harmonic motion.
- CO-2. To understand The Forced Oscillator and coupled oscillators.
- CO-3. To study the Wave Optics.
- CO-4. To study the diffraction and polarization.

S.No.	Торіс	Week	Month
1.	Characteristics and graphical	First Week	July
	representation of SHM		
2.	Phase relation between	Second Week	
	displacement, velocity and		
	acceleration of a particle,		
	executing SHM		
3.	SHM oscillator (mass attached to	Third Week	
	a spring placed on horizontal		
	frictionless surface). energy of a		
	simple harmonic oscillator.		
4.	Solution of the differential	Fourth Week	
	equation of SHM. Average kinetic		

	energy, average potential energy and total energy.		
5.	Damped oscillations. differential equation of motion of one dimensional damped harmonic mechanical oscillator.	First Week	August
6.	Types of damping. damped harmonic electric oscillator (differential equation and its solutions).	Second Week	
7.	Determination of the damping constants. Logarithmic decrement. Relaxation time. The quality factor.	Third Week	
8.	Power dissipation in a damped harmonic oscillator when damping is weak, Relation between power dissipation energy and relaxation time of damped harmonic oscillator.	Fourth Week	
9.	Transient and steady behaviour of forced oscillator, Displacement and velocity variation with driving force frequency	First Week	September
10.	Variation of phase with frequency. Power supplied to an oscillator and its variation with frequency.	Second Week	
11.	Q- value and band width. Q-value as an amplification factor, Stiffness coupled pendulums	Third Week	
12.	Normal co-ordinates and normal modes of vibration.	Fourth Week	
13.	Inductance coupling of electrical oscillators	First Week	October
14.	The type of waves. The wave equation and its solution	Second Week	
15.	Characteristic impedance of a string. Impedance matching. Reflection and transmission of energy	Third Week	
16.	Reflected and transmitted energy coefficients. Standing waves on a string of fixed length. Energy of a vibrating string. Wave velocity and group velocity.	Fourth Week	
17.	Electromagnetic nature of light, Definition and Properties of wave front, Huygens Principle.	First Week	November

18.	Division of wavefront and	Second Week	
	division of amplitude. Young's		
	Double Slit experiment		
19.	Lloyd's Mirror and Fresnel's	Third Week	
	Biprism. Phase change on		
	reflection: Stokes's treatment		
20.	Interference in Thin Films:	Fourth Week	
	parallel and wedge-shaped films.		
	Fringes of equal inclination		
	(Haidinger Fringes); Fringes of		
	equal thickness (Fizeau Fringes).		
21.	Newton's Rings: measurement of	First Week	December
	wavelength and refractive index.		
	Michelson's Interferometer.		
22.	Fraunhofer diffraction: Single slit;	Second Week	
	Double Slit. Multiple slits &		
	Diffraction grating, Dispersive		
	power of diffraction grating,		
	Fresnel Diffraction		
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Half-period zones. Zone plate.	Second Week	February
	Fresnel Diffraction pattern of a		
	straight edge, a slit and a wire		
26	using half-period zone analysis.	TT1 ' 1 XX7 1	
26.	Iransverse nature of light waves.	I hird Week	
	Unpolarized and plane polarized		
	light. Wire grid polarizor		
	Polaroid Effect of intensity of		
	light passing through Polaroid		
	Malus" law double refraction:		
	ordinary ray and extraordinary		
	ray, positive and negative crystals		
27.	Birefringence, Nicol Prism.	Fourth Week	
	guarter wave plate and half wave		
	plate, Polarization by reflection		
	(Brewster law), polarization by		
	scattering, Circular and elliptical		
	polarization, production of		
	elliptically polarized and		
	circularly polarized light.		
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Physics Workshop Skills (PHYS203)

Lectures per Week: 2

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. To learn Measuring units and their conversion to SI and CGS.

- CO-2. To understand the Concept of workshop practice.
- CO-3. Understand the concept of Electrical and Electronic Skill.

CO-4. Study the gear system, wheel, Fixing of gears with motor axel, Lever mechanism.

S.No.	Торіс	Week	Month
1.	Measuring units, conversion to SI and CGS	First Week	July
2.	Familiarization with meter scale, Vernier calliper, Screw gauge and their utility	Second Week	
3.	Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc	Third Week	
4.	Use of Sextant to measure height of buildings, mountains, etc.	Fourth Week	
5.	Concept of workshop practice	First Week	August
6.	Overview of manufacturing methods: casting, foundry, machining, forming and welding	Second Week	
7.	Types of welding joints and welding defects	Third Week	
8.	Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood.	Fourth Week	
9.	Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines	First Week	September
10.	Cutting tools, lubricating oils. Cutting of a metal sheet using blade.	Second Week	
11.	Smoothening of cutting edge of sheet using file.	Third Week	
12.	Drilling of holes of different diameter in metal sheet and wooden block	Fourth Week	
13.	Use of bench vice and tools for fitting	First Week	October
14.	Make funnel using metal sheet.	Second Week	

15.	Use of Multimeter.	Third Week	
16.	Soldering of electrical circuits	Fourth Week	
	having discrete components (R,		
	L, C, diode) and ICs on PCB		
17.	Operation of oscilloscope	First Week	November
18.	Making regulated power supply	Second Week	
19.	Timer circuit	Third Week	
20.	Electronic switch using transistor and relay	Fourth Week	
21.	Introduction to prime movers	First Week	December
22.	Mechanism of prime movers	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Gear system, wheel, Fixing of	Second Week	February
	gears with motor axel. Lever		
26			
26.	Lifting of heavy weight using	I hird Week	
27	D 11 1 1 1 1 1 1 1		
27.	Pulleys, working principle of	Fourth week	
	power generation systems.		
	Demonstration of pulley		
20	experiment.		
28.	Kevision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Electrical Circuits and Network Skills (PHYS205)

Lectures per Week: 2

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. To understand Basic Electricity Principles.

CO-2. Understanding Electrical Circuits.

CO-3. To learn Electrical Drawing and Symbols.

CO-4. To study Generators and Transformers, Electric Motors.

CO-5. To understand the concept of Electrical Wiring.

S.No.	Торіс	Week	Month
1.	Voltage, Current, Resistance, and	First Week	July
	Power		
2.	Ohm's law. Series, parallel, and	Second Week	
	series-parallel combinations.		
3.	AC Electricity and DC Electricity	Third Week	

4.	Familiarization with multimeter,	Fourth Week	
5	Voltmeter and ammeter.	First West	A
5.	their combination	First week	August
6.	Rules to analyze DC sourced	Second Week	
	electrical circuits		
7.	Current and voltage drop across	Third Week	
	the DC circuit elements.		
8.	Single-phase and three-phase	Fourth Week	
	alternating current sources.		
9.	Rules to analyze AC sourced	First Week	September
	electrical circuits. Real, imaginary		
	and complex power components		
	of AC source		
10.	Power factor, Saving energy and	Second Week	
	money.		
11.	Electrical Drawing and Symbols:	Third Week	
10	Drawing symbols. Blueprints	F 41 W 1	
12.	Reading Schematics. Ladder	Fourth week	
	Bower circuits. Control circuits.		
12	Power circuits. Control circuits	First Wask	Oatabar
15.	Tracking the connections of	THIST WEEK	October
	elements and identify current		
	flow and voltage drop		
14	DC Power sources AC/DC	Second Week	
17.	generators	Second week	
15.	Inductance, capacitance, and	Third Week	
101	impedance. Operation of		
	transformers.		
16.	Single-phase, three-phase & DC	Fourth Week	•
	motors. Basic design. Interfacing		
	DC or AC sources to control		
	heaters & motors, Speed & power		
	of ac motor		
17.	Resistors, inductors and	First Week	November
	capacitors. Diode and rectifiers		
18.	Components in Series or in shunt.	Second Week	
	Response of inductors and		
	capacitors with DC or AC sources		
19.	Relays, Fuses and disconnect	Third Week	
20	switches, Circuit breakers		
20.	Overload devices. Ground-fault	Fourth Week	
	protection, Grounding and		
21	isolating. Phase reversal.	F' (W 1	
21.	Surge protection. Interfacing DC	First week	December
	(relay protection device)		
1	(iciay protection device)		

22.	Different types of conductors and cables. Basics of wiring-Star and delta connection.	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits	Second Week	February
26.	Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps,	Third Week	
27.	Terminal blocks, split bolts, and solder. Preparation of extension board.	Fourth Week	
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Class: BSc Third Year

Course: Solid State Physics and Electronics (PHYS302)

Lectures per Week: 3

Course Outcomes (CO):

- CO-1. Understand Crystal Structure and different types of Crystal Bonding.
- CO-2. Understand and explain Elementary Lattice Dynamics.
- CO-3. Learn and elaborate Free electron theory of metals.
- CO-4. Know and explain Band Theory of Metals and concept of Superconductivity.
- CO-5. Understand and elaborate the concept of Junction diodes and Transistors.
- CO-6. Learn and understand the applications of Amplifiers and Oscillators.

S.No.	Торіс	Week	Month
1.	Lattice Translation Vectors.	First Week	July
	Lattice with a Basis, Unit Cell,		
	Types of Lattices,		
2.	Miller Indices. Reciprocal Lattice,	Second Week	
	Brillouin Zones		
3.	Diffraction of X-rays by Crystals,	Third Week	
	Bragg's Law, Laue pattern, Laue		
	equation		
4.	Atomic and Geometrical Factor.	Fourth Week	

5.	Potential between a pair of atoms, Lennard-Jones potential	First Week	August
6.	Ionic, Covalent, Vander - Waal's bonded crystals, Calculation of cohesive energy for ionic and inert gas system	Second Week	
7.	Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons.	Third Week	
8.	Qualitative Description of the Phonon Spectrum in Solids. Dulong and Pettit's Law,	Fourth Week	
9.	Einstein and Debye theories of specific heat of solids, T3 law, Free electron theory of metals: Classical picture, Fermi gas, density of states	First Week	September
10.	Fermi energy and fermi velocity, electronic contribution to specific heat of metals, Kronig Penny model	Second Week	
11.	Brillouin zones, electrons in periodic structure, energy bands, energy gaps, Effective mass of electrons and holes, metals, insulators, p and n type Semiconductors effective mass of electron, mobility.	Third Week	
12.	Experimental Results. Critical Temperature. Critical magnetic field, Meissner effect.	Fourth Week	
13.	Type I and type II Superconductors, London's Equation and Penetration Depth.	First Week	October
14.	Isotope effect. cooper pairs, BCS theory	Second Week	
15.	PN junctions, V-I characteristics, Zener diode, voltage regulation, tunnel diode, LED and LCD, Solar cell, diode as circuit element, load line concept	Third Week	
16.	Rectifiers: Half Wave, full wave and bridge rectifier, efficiency and ripple factor, filter circuits.	Fourth Week	
17.	Characteristics of a transistor in CB, CE and CC mode, idea of equivalent circuits, α and β of BJT, common emitter amplifier.	First Week	November

18.	Field Effect Transistor: working of JFET, voltage ampere curves, biasing JFET	Second Week	
19.	ac operation of JFET, depletion and enhancement mode, MOSFET, FET amplifier	Third Week	
20.	Small signal amplifiers: General principles of operation, classification, distortion	Fourth Week	
21.	RC coupled amplifier, gain frequency response, input and output impedance. Multistage amplifiers, transformed coupled amplifiers	First Week	December
22.	Equivalent circuits at low, medium and high frequencies, emitter follower, low frequency common source and common drain amplifier	Second Week	
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Noise in electronic circuits. Feedback in amplifiers; negative feedback and stability.	Second Week	February
26.	Braukhausen criteria for oscillations, Tuned collector, Hartley and Colpitts oscillators, phase shift oscillators,	Third Week	
27.	Operational amplifiers, inverting and non-inverting amplifiers, operational amplifier as adder, subtractor, comparator, integrator and differentiator.	Fourth Week	
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Quantum Mechanics (PHYS305)

Lectures per Week: 3

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. Understand the Time dependent Schrodinger equation.

- CO-2. Know the bound states in an arbitrary potential.
- CO-3 To understand Quantum theory of hydrogen-like atoms.

CO-4. To study Atoms in Electric and Magnetic Fields. CO-5. Learn the behaviour of Atoms in External Magnetic Fields.

S.No.	Торіс	Week	Month
1.	Time dependent Schrodinger equation and dynamical evolution of a quantum state	First Week	July
2.	Properties of Wave Function. Interpretation of Wave Function	Second Week	
3.	Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions	Third Week	
4.	Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions.	Fourth Week	_
5.	Position, momentum & Energy operators; commutator of position and momentum operators	First Week	August
6.	Expectation values of position and momentum. Wave Function of a Free Particle	Second Week	
7.	Time independent Schrodinger equation-Hamiltonian	Third Week	
8.	Stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions	Fourth Week	
9.	General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to the spread of Gaussian wavepacket for a free particle in one dimension; wave packets	First Week	September
10.	Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.	Second Week	
11.	General discussion of bound states in an arbitrary potential	Third Week	
12.	Continuity of wave function, boundary condition and emergence of discrete energy levels	Fourth Week	
13.	Application to one-dimensional problem- square well potential	First Week	October

14.	Ouantum mechanics of simple	Second Week	
	harmonic oscillator-energy levels		
	and energy eigenfunctions using		
	Frobenius method		
15.	Ouantum theory of hydrogen-like	Third Week	_
	atoms: time independent		
	Schrodinger equation in spherical		
	polar coordinates:		
16.	Separation of variables for the	Fourth Week	_
-	second order partial differential		
	equation: angular momentum		
	operator and quantum numbers:		
17.	Radial wave functions from	First Week	November
- / ·	Frobenius method:		
18.	Orbital angular momentum	Second Week	_
-	guantum numbers 1 and m; s, p, d,		
	shells. Electron Angular		
	Momentum		
19.	Space Quantization, Electron	Third Week	
	Spin and Spin Angular		
	Momentum, Larmor's Theorem.		
20.	Spin Magnetic Moment. Stern-	Fourth Week	
	Gerlach Experiment. Zeeman		
	Effect: Electron Magnetic		
	Moment and Magnetic Energy,		
	Gyromagnetic Ratio and Bohr		
	Magneton		
21.	Atoms in External Magnetic	First Week	December
	Fields: Zeeman Effect		
22.	MTT	Second Week	
23.	MTT	Third Week	
24.	Normal and Anomalous Zeeman	Fourth Week	
	Effect.		
25.	Pauli's Exclusion Principle.	Second Week	February
	Symmetric and Antisymmetric		
	Wave Functions. Periodic table		
26.	Fine structure. Spin orbit	Third Week	
	coupling. Spectral Notations for		
	Atomic States. Total Angular		
	Momentum.		
27.	Vector Model. Spin-orbit	Fourth Week	
	coupling in atoms-L-S and J-J		
	couplings		
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Radiation Safety (PHYS307)

Lectures per Week: 2

Course Outcomes (CO):

- CO-1. Understand the Basics of Atomic and Nuclear Physics.
- CO-2. To learn Interaction of Radiation with matter: Types of Radiation.
- CO-3. To study Radiation detection and monitoring devices.
- CO-4. Get knowledge of Radiation safety management.
- CO-5. Understand Application of nuclear techniques.

S.No.	Торіс	Week	Month
1.	Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron.	First Week	July
2.	The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes.	Second Week	
3.	Law of radioactive decay, Mean life and half-life, basic concept of alpha, beta and gamma decay.	Third Week	
4.	Concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission.	Fourth Week	
5.	Alpha, Beta, Gamma and Neutron and their sources.	First Week	August
6.	Sealed and unsealed sources, Interaction of Photons – Photo electric effect, Compton Scattering, Pair Production, Linear and Mass Attenuation Coefficients	Second Week	
7.	Interaction of Charged Particles: Heavy charged particles - Beth- Bloch Formula, Scaling laws, Mass Stopping Power, Range, Straggling	Third Week	
8.	Channelling and Cherenkov radiation. Beta Particles- Collision and Radiation loss (Bremsstrahlung), Interaction of	Fourth Week	

	Neutrons- Collision, slowing		
	down and Moderation.		
9.	Basic idea of different units of	First Week	September
10	activity, KERMA.	G 1111 1	-
10.	Exposure, absorbed dose,	Second Week	
	equivalent dose, effective dose,		
	collective equivalent dose,		
	Annual Limit of Intake (ALI) and		
11	derived Air Concentration (DAC).		-
11.	Radiation detection: Basic	Third Week	
	concept and working principle of		
	gas detectors (Ionization		
10	Chambers, Proportional Counter		
12.	Multi-Wire Proportional Counters	Fourth Week	
	(MWPC) and Geiger Muller		
10	Counter).	TT	
13.	Scintillation Detectors (Inorganic	First Week	October
1.4	and Organic Scintillators).	0 1 1 1	
14.	Solid States Detectors and	Second Week	
	Neutron Detectors, Thermo		
1.7	luminescent Dosimetry.		-
15.	Radiation safety management:	Third Week	
	Biological effects of ionizing		
1.0	radiation.		
16.	Operational limits and basics of	Fourth Week	
	radiation hazards evaluation and		
	control: radiation protection		
17	standards.		
1/.	International Commission on	First Week	November
	Radiological Protection (ICRP)		
	principles, justification,		
10	optimization, limitation.	C 1W 1	-
18.	Introduction of safety and risk	Second Week	
10	Management of radiation.	T1 1 XV 1.	-
19.	nuclear waste and disposal	I hird week	
20	Brief idea about Accelerator	Fourth Week	-
20.	driven Sub-critical system (ADS)		
	for waste management.		
21.	Application of nuclear techniques	First Week	December
22.	Application in medical science	Second Week	1
	(e.g., MRI, PET. Projection		
	Imaging Gamma Camera.		
	radiation therapy)		
23.	MTT	Third Week	
24.	MTT	Fourth Week	1
25.	Archaeology, Art, Crime	Second Week	February
	detection.		

26.	Mining and oil. Industrial Uses:	Third Week	
	Tracing, Gauging.		
27.	Material Modification,	Fourth Week	
	Sterilization, Food preservation.		
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	

Course: Renewable Energy Sources and Energy Harvesting (PHYS310)

Lectures per Week: 2

Course Outcomes (CO):

After the completion of this course students should be able to;

CO-1. To study Fossil fuels and Alternate Sources of energy.

CO-2. To study Solar energy and its importance. CO-3. Know the

Wind Energy harvesting, Ocean energy.

CO-4. Understand the harvesting of Geothermal Energy and hydro energy.

CO-5. To study Piezoelectric Energy harvesting and electromagnetic energy.

S.No.	Торіс	Week	Month
1.	Fossil fuels and Nuclear Energy,	First Week	July
	their limitation		
2.	Need of renewable energy, non-	Second Week	
	conventional energy sources		
3.	An overview of developments in	Third Week	
	Offshore Wind Energy, Tidal		
	Energy		-
4.	Wave energy systems, Ocean	Fourth Week	
	Thermal Energy Conversion.		
5.	Solar energy, biomass,	First Week	August
	biochemical conversion.		
6.	Biogas generation, geothermal	Second Week	
	energy tidal energy		
7.	Hydroelectricity.	Third Week	
8.	Solar energy, its importance,	Fourth Week	
	storage of solar energy.		
9.	Solar pond, non-convective solar	First Week	September
	pond, applications of solar pond		
	and solar energy		
10.	Solar water heater, flat plate	Second Week	
	collector.		
11.	Solar distillation, solar cooker,	Third Week	
	solar green houses, solar cell,		
	absorption air conditioning.		

12.	Need and characteristics of	Fourth Week	
	photovoltaic (PV) systems.		
13.	PV models and equivalent	First Week	October
	circuits, and sun tracking systems.		
14.	Fundamentals of Wind energy	Second Week	
15.	Wind Turbines and different	Third Week	
	electrical machines in wind		
	turbines		
16.	Power electronic interfaces, and	Fourth Week	
	grid interconnection topologies.		
17.	Ocean Energy Potential against	First Week	November
	Wind and Solar, Wave		
	Characteristics and Statistics,		
	Wave Energy Devices.		
18.	Tide characteristics and Statistics,	Second Week	
	Tide Energy Technologies, Ocean		
	Thermal Energy, Osmotic Power,		
	Ocean Bio-mass		
19.	Geothermal Resources,	Third Week	
	Geothermal Technologies		
20.	Hydropower resources,	Fourth Week	
	hydropower technologies		
21.	Environmental impact of hydro	First Week	December
	power sources.		
22.	Introduction, Physics and	Second Week	
	characteristics of piezoelectric		
	effect, materials and mathematical		
	description of piezoelectricity		
23.	MTT	Third Week	
24.	MTT	Fourth Week	
25.	Piezoelectric parameters and	Second Week	February
	modelling piezoelectric		
	generators, Piezoelectric energy		
	harvesting applications, Human		
	power.		
26.	Linear generators, physics	Third Week	
	mathematical models, recent		
	applications, Carbon captured		
	technologies.		
27.	Cell, batteries, power	Fourth Week	
	consumption, Environmental		
	issues and Renewable sources of		
	energy, sustainability.		
28.	Revision	First Week	March
29.	Revision	Second Week	
30.	Revision	Third Week	
31.	Revision	Fourth Week	